QMTest: User's Guide

(& (ODESOURCERY

QMTest: User's Guide

QMTest: User's Guide
CodeSourcery, Inc.
Copyright © 2002-2006 CodeSourcery Inc

QMTest is a testing tool. You can use QMTest to test a software application, such as a database,
compiler, or web browser. You can even QMTest to test a physical system (like a valve or thermo-
meter) if you have a way of connecting it to your computer.

Code that has not been tested adequately generally does not work. Yet, many applications are deployed
without adequate testing, often with catastrophic results. It is much more costly to find defects at the
end of the release cycle than at the beginning. By making it easy to develop tests, and execute those
tests to validate the application, QMTest makes it easy to find problems easier, rather than later.

QMTest can be extended to handle any application domain and any test format. QMTest works with
existing testsuites, no matter how they work or how they are stored. QMTest's open and pluggable
architecture supports a wide variety of applications.

QM Test features both an intuitive graphical user interface and a conventional command-line interface.
QMTest can run tests in serial, in parallel on a single machine, or across a farm of possibly hetero-
geneous machines.

CodeSourcery provides support for QMTest. CodeSourcery can help you install, integrate, and cus-
tomize QMTest. For more information, visit the QMTest web site’.
I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

Open Publication work may be reproduced and distributed in whole or in part, in any medium physical
or electronic, provided that the terms of this license are adhered to, and that this license or an incorpor-
ation of it by reference is displayed in the reproduction.

Proper form for incorporation of this license by reference is as follows:

Copyright © 2000, 2001 by CodeSourcery LLC. This material may be distributed
only subject to the terms and conditions set forth in the Open Publication License.

Commercial redistribution of material covered by this license is permitted.

Any publication in standard (paper) book form shall require the citation of the original author and
(where applicable) publisher.

Il. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee(s).
111. SCOPE OF LICENSE

The license terms below apply to all Open Publication works.

AGGREGATION. Mere aggregation of Open Publication works or a portion of an Open Publication
work with other works or programs on the same media shall not cause this license to apply to those
other works. The aggregate work shall contain a notice specifying the inclusion of the Open Publication
material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the re-
maining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided "as is' without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

L http://www.gmtest.com

http://www.qmtest.com

QMTest: User's Guide

All modified versions of documents covered by this license, including translations, anthologies, com-
pilations and partial documents, must meet the following requirements:

1.

2.

The modified version must be labeled as such.
The person making the modifications must be identified and the modifications dated.

Acknowledgement of the original author and publisher if applicable must be retained according
to normal academic citation practices.

The location of the original unmodified document must be identified.

The original author's (or authors) name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors') permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redis-
tributors that:

1.

If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email no-
tification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe madifications, if any, made to the document.

All substantive modifications (including deletions) be either clearly marked up in the document
or else described in an attachment to the document.

Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of
any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

Table of Contents

1. QIMTESE CONCEPLS ...ttt et 1
L TS ittt 2
1.2, RUNNING TESES ..ttt 3
1.1.2. PrereqUIsite TESESc.uuu it 3
1.1.3. Ordering and DependenCiesccouvurieeiiiiieiiiiiee e 4

1.2, TESE RESUIES ... e 5
1.2.1. OULCOMES ..evneeitnieiiiee ittt et et eae e 5
1.2.2. ANNOTALIONS .oevvieiiii e 5

1.2.3. EXPECted OULCOIMEScevviiieiiiiieeeeii e 6

1.3 TESE SUITES ...ttt 6
1.3.2. IMPIICIt TSt SUITES ...t 6
1.3.2. EXPICIt TSt SUITES ...t 7

1.4, TeSt DAtADASEieeiiit e 8
1.5. Expectation Databaseuviiiiiiiiiiiiieei e 8
1.8, CONEEXE vt 8
1.7, RESOUICES ..ttt ettt ettt et 9
L8, TaIGBES ettt 10
1.0, HOSES oot 11
2. INVOKING QMTESE ...ttt 12
2.0 OMEESE oo 13
2.1.0. SYNOPSIS .ttt ettt 13
2.1.2. OPLIONS ...ttt 13

2.2, OMEESE CrEALE ...ttt 13
2.2.1. SUMMAIY oottt 13
2.2.2. SYNOPSIS ettt 13
2.2.3. DESCIIPLION ...ttt et 13
2.2.4 EXaMPIE oot 14

2.3. gMEESt Create-targelvvieiiiiiie e 15
2.3. 1. SUMMAIY oottt e 15
2.3.2. SYNOPSIS ettt ettt 15
2.3.3. DESCIIPLION ..ttt e 15

2.4, gmtest create-tdh ... 15
2.4. 1. SUMMATY oottt ettt 15
2.4.2. SYNOPSIS .ttt ettt 15
2.4.3. DESCIIPLION ..ttt e e 15

2.5, OIMEESE GUI oeevvtieeiii e e e e 16
2.5. 1. SUMMAIY oottt e 16
2.5.2. SYNOPSIS ..ttt ettt 16
2.5.3. DESCIIPLION ..ttt e 16

2.6, OMEESE EXLENSIONSciiiit et ettt et 17
2.6. 1. SUMMAIY ..ovtiiiiiii et e 17
2.8.2. SYNOPSIS - eeeeti ettt ettt 17
2.6.3. DESCIIPLION ...ttt e e 17

2.7. gMEESt deSCribe ... 17
2.7. 1 SUMMAIY oottt 17
2.7.2. SYNOPSIS ettt ettt 18
2.7.3. DESCIIPLION ..ottt 18

2.8, gIMEESE IS .. 18
2.8. 1. SUMMAIY ..oviiiiiiiiiec et 18
2.8.2. SYNOPSIS . eeeeti ettt 18
2.8.3. DESCIIPLION ... eeiiii et et 18

QMTest: User's Guide

2.9, OMEESE FEOISEEN L.vuiiiii i e e 18
2.9. 1, SUMMANY ottt e 18
2.9.2. SYNOPSHS ovvteiii et e et 18
2.9.3. DESCIIPLION .uviiiii e 19

2.00. gMEESE TUN et as 19
2.00.0. SUMMAIY oottt 19
2.10.2. SYNOPSIS .vvniriiiiiii et ettt e e e 19
2.10.3. DESCIIPLION .vvtiiiieii e e 19

2.11. gMEESt SUMMAIIZE ..ovviiiii e e e e e aes 21
2,010, SUMMATY ot 21
2.10.2. SYNOPSIS «vvnieiiieii et e e et e e 21
2 N 0 L1t 1] o 22

2,02, OMEESE FEPOIT ..ottt 22
2.02. 0. SUMMATY oottt e e 22
2.12.2. SYNOPSIS «.vvneiiiiiii et et et 22
2.12.3. DESCIIPLION .vvtiiiieii e e e 22

2.13. Environment Variablescooviiiiiiiiiiii e 22

2.14. Configuration Variablesc.coveiiiiiiiii e 23

2.15. REIUM VAIUE ... 23

3. CUStOMIZING QMTESE ..\ttt e e e e 24

T O 4 (=1 57 o] 25

B2 TS ettt ettt 26
3.2.1. COMMANA . EXECTEST 4.viviritiiitii ittt ittt aaeanes 26
3.2.2. command . Shel1COMMANATEST ..voviviriririrititie it ieiiiieieieeenaaaaenes 27
3.2.3. command.ShelISCriptTEST ...c.ovuiuiiii i e 27
3.2.4, COMPIIALEONTEST .vuiviiiii it e e 28

3.3, TSE SUITES .vvuiiii e e r e 28

34, TESE RESOUICES ...ttt ittt 28
3.4.1. TemPDIreCtOrYRESOUNCE .. .iviviiuitiititeieteeie et e e eee e aeteaeeaenees 28
3.4.2. CoMPIIErTabIE ..oviniiiii e 28

3.5, TSt DAADASESvvvneiii et e e et 29
3.5.1. XIMLDAADASEvvevvveiiiieiiii e 29
3.5.2. CompilationTestDATAbASEocuevuiuiriiniieiieteieeeae e raeneaens 29

3.6. EXPECtation Databhasescceuuieiiiieiiiiieiiiie e s e s e 30
3.6.1. PrevioUSTEStRUNvuiiii e e e e 30
3.6.2. XMLEXpectationDatabasec..oveviueiiiiiiiiiieiiineeii e 31

ST TSt TaIgBES vttt ettt 31
3.7.1. Target Specificationcoeeiiiiiiiiiii e 31
3.7.2. Target ClIaSSES ...vvvieiiieiii et e e e e 32

B8 HOSES vttt 33
3.8.1. 10cal _hoSt.LOCATHOSTiviviririiiiitii it 33
3.8.2. SSN_NOST.SSHHOST . .vivitiiiiiiii ittt 33
3.8.3. SSN_NOST.RSHHOST . .\uviviiiiiiiiii ittt aaes 33
3.8.4. simuIator.SIMUIATON ..o 34

3.9. Result Streams and Result Readersc.ccovveiiieiiiiiiiieci e, 34
3.9.1. text_result_stream.TextResultStreamccocovviiivinininnnnn. 34
3.9.2. xml_result_stream.XMLRESUITSEreamccoevvviviiiiiiiiiininininns 34
3.9.3. pickle_result_stream.PickleResultStreamccoceevuenns 34
3.9.4. sql_result_stream.SQLReSUITSTreamcocoevveirenninernenennnn. 34

3.10. The QMTest Configuration Filec.ccooiiiiiiiiiiii e, 34
3.10.1. Configuration Variablescccoooiiiiiiiii 35

4, EXTENAING QMTESE 1.uuiiii it e e e e e e a e 36

4.1, EXTENSION ClIASSES .. cvvviiiiieiiie et e e e e 37

T [IO T 38

QMTest: User's Guide

4.2.1. BUIlt-IN Field CIaSSESvveeiiiiieeiiii e 39
4.2.2. Writing Field CIassescccuuieiiiiiiiiiieiiie e 39
4.3, WIItING TSt ClaSSES ..vvvuiiiieiiii i e e e a e 40
4.4, Writing ReSOUICE ClIaSSEScvvuiiiiiieiiieiiiee e e e e 41
4.5, Writing Database ClaSseSccuuiiiinieiiiieiii e eei e e e e e e 41
4.6. Registering and Distributing Extension Classescccoeeviiviiiiieiinnennnn. 42

Vi

Chapter 1
QMTest Concepts

QMTest Concepts

This section presents the concepts that underlie QMTest's design. By understanding these concepts,
you will be able to better understand how QMTest works. In addition, you will find it easier to extend
QMTest to new application domains.

The central principle underlying the design of QMTest is that the problem of testing can be divided
into a domain-dependent problem and a domain-independent problem. The domain-dependent
problem is deciding what to test and how to test it. For example, should a database be tested by per-
forming unit tests on the C code that makes up the database, or by performing integration tests using
SQL queries? How should the output of a query asking for a set of records be compared to expected
output? Does the order in which records are presented matter? These are questions that only someone
who understands the application domain can answer.

The domain-independent part of the problem is managing the creation of tests, executing the tests,
and displaying the results for users. For example, how does a user create a new test? How are tests
stored? Should failing tests be reported to the user, even if the failure was expected? These questions
are independent of the application domain; they are just as relevant for compiler tests as they are for
database tests.

QMTest is intended to solve the domain-independent part of the problem and to offer a convenient,
powerful, and flexible interface for solving the domain-dependent problem. QMTest is both a complete
application, in that it can be used “out of the box” to handle many testing domains, and infrastructure,
in that it can be extended to handle other domains.

Throughout this chapter we will use the gmtest application with a variety of parameters and options.
For a full description of the gmtest please refer to the command-line reference.

The following commands create a simple test database in the current working directory. This test
database will be used throughout the following sections of this tutorial.

> mkdir tdb
> cd tdb
> gmtest create-tdb

1.1 Tests

A test checks for the correct behavior of the target application. What constitutes correct behavior
will vary depending on the application domain. For example, correct behavior for a database might
mean that it is able to retrieve records correctly while correct behavior for a compiler might mean
that it generates correct object code from input source code.

Every test has a name that uniquely identifies the test, within a given test database. Test names must
be composed entirely of lowercase letters, numbers, the “_” character, and the “.” character. You
can think of test names like file names. The “.” character takes the place of “/”; it allows you to place
atest in a particular directory. For example, the test name a.b.c names a test named c in the directory
a.b. The directory a.b is a subdirectory of the directory a.

Every test is an instance of some test class. The test class dictates how the test is run, what constitutes
success, and what constitutes failure. For example, the command.ExecTest class that comes with
QMTest executes the target application and looks at its output. The test passes if the actual output
exactly matches the expected output.

QMTest Concepts

The arguments to the test parameterize the test; they are what make two instances of the same test
class different from each other. For example, the arguments to command.ExecTest indicate which
application to run, what command-line arguments to provide, and what output is expected.

The python._ExecTest class is similar to command . ExecTest, but, instead of executing a command
using the system shell, it evaluates an expression in the Python programming language. The test
passes if (and only if) the expression is true. In Python, the expressions True and False are literals.

The following creates two trivial tests, python_pass and python_fail:

> gmtest create --id=python_pass -a expression="True" test python.ExecTest
> gmtest create --id=python_fail -a expression="False" test python.ExecTest

The first test will always pass while the second will always fail.

The gmtest Iscommand will show the content of the test database:

> gmtest Is
python_fail
python_pass

Similar to the Unix Is command, the -1 option can be used to provide a detailed listing, with kind
("test", "resource", or "suite"), extension class, and id:

> gmtest Is -1
test python.ExecTest python_fail
test python.ExecTest python_pass

1.1.1 Running Tests

To run one or more tests, use the gmtest run command:

> gmtest run

Each invocation of the gmtest run command is a single test run, and produces a single set of test
results and statistics. Specify as arguments the names of tests and test suites to run. Even if you
specify a test more than once, either directly or by incorporation in a test suite, QMTest runs it only
once.

If you wish to run all tests in the test database, use the implicit test suite . (a single period; see Sec-
tion 1.3.1, “Implicit Test Suites™), or omit all IDs from the command line.

QMTest can run tests in multiple concurrent threads of execution or on multiple remote hosts. See
the documentation for the run command for details.

How the output of the gmtest run command should be interpreted will be discussed in Section 1.2,
“Test Results”.

1.1.2 Prerequisite Tests

QMTest can avoid running one test (a "dependent test") when some other test (a "prerequisite test™)
has a particular outcome.

QMTest Concepts

Suppose that you have a test database with a very simple test that can be run very quickly, and a very
complex test that takes hours to run. You know that if the simple test fails, then there is no chance
that the complex test will pass. In that case, you could make the simple test a prerequisite of the
complex test. Then, when you run both tests, QMTest will run the simple test first. If it fails, the
complex test will not be run at all.

Alternatively, suppose that you have a very comprehensive test that tests ten features of your software.
You also have ten separate tests, one for each feature. The comprehensive test can be run in one
minute; runnning the separate tests takes two minutes each. So, you want to run the comprehensive
test first; if it passes, there is no need to run the individual tests. However, if the comprehensive test
fails, you may want to run the single tests to isolate the problem. In this case, each of the simple tests
would have the comprehensive test as a prerequisite, indicating that the simple test should be run
only if the comprehensive test fails.

If you explicitly run just the dependent test, QMTest will not run the prerequisite test automatically.
In other words, prerequisites are an optimization; when running both the prerequisite and the dependent
test, QMTest will run them in the order you've implied, and can omit the dependent test if it is not
useful. But, QMTest will not automatically force you to run the prerequisite tests when you only
want to run the dependent test.

Because prerequisite tests are not run unless you ask for them, the dependent test should not depend
in any way on the prerequisite test. Otherwise, users will see different test outcomes when they run
the dependent test by itself. In other words, each test should stand alone; the order in which tests are
run should not affect their outcomes.

1.1.3 Ordering and Dependencies

Given one or more input test names and test suite names, QMTest employs the following procedure
to determine which tests and resources to run and the order in which they are run.

1. QMTest resolves test names and test suite names. Test suites are expanded into the tests they
contain. Since test suites may contain other test suites, this process is repeated until all test suites
have been expanded. The result is a set of tests that are to be run.

2. QMTest computes a schedule for running the tests to be run such that a test's prerequisites are
run before the test itself is run. Prerequisites not included in the test run are ignored. Outside
of this condition, the order in which tests are run is undefined.

If QMTest is invoked to run tests in parallel or distributed across several targets, the tests are
distributed among them as well. QMTest does not guarantee that a test's prerequisites are run
on the same target, though. On each target, tests are assigned to the next available concurrent
process or thread.

3. QMTest determines the required resources for the tests to be run. If several tests require the
same resource, QMTest attempts to run all of the tests on the same target. In this case, the re-
source is set up and cleaned up only once. In some cases, QMTest may schedule the tests on
multiple targets; in that case, the resource is set up and cleaned up once on each target.

In the following cases, a test or resource will not be executed, even though it is included in the set
of tests enumerated above:

» Atestspecifies for each of its prerequisite tests an expected outcome. If the prerequisite is included
in the test run and the actual outcome of the prerequisite test is different from the expected out-
come, the test is not run. Instead, it is given an UNTESTED outcome.

QMTest Concepts

If a test's prerequisite is not included in the test run, that prerequisite is ignored.

» Ifasetup function for one of the resources required by a test fails, the test is given an UNTESTED
outcome.

» The cleanup function of a resource is run after the last test that requires that resource, whether
or not that test was run. The cleanup function is run even if the setup function failed.

1.2 Test Results

A result is an outcome together with some annotations. The outcome indicates whether the test
passed or failed. The annotations give additional information about the result, such as the manner in
which the test failed, the output the test produced, or the amount of time it took to run the test.

1.2.1 Outcomes

The outcome of a test indicates whether it passed or failed, or whether some exceptional event oc-
curred. There are four test outcomes:

» PASS: The test succeeded.
* FAIL: The test failed.

» ERROR: A problem occurred in the test execution environment, rather than in the tested system.
For example, this outcome is used when the test class attempted to run an executable in order to
test it, but could not because the system call to create a new process failed.

This outcome may also indicate a defect in QMTest or in the test class.

« UNTESTED: QMTest did not attempt to execute the test. For example, this outcome is used
when QMTest determines that a prerequisite test failed.

Thus, running QMTest with the two previously defined tests will result in the following output:

> gmtest run

T2 SITH = = T B

python_fail : FAIL
Expression evaluates to false.
python_pass : PASS
——— STATISTICS ————— oo

2 tests total
1 (50%) tests FAIL
1 (50%) tests PASS

In addition, the results are stored in a results file (results.qgmr by default).

1.2.2 Annotations

An annotation is a key/value pair. Both the keys and values are strings. The value is HTML. When
a test (or resource) runs it may add annotations to the result. These annotations are displayed by

QMTest Concepts

QMTest and preserved in the results file. If you write your own test class, you can use annotations
to store information that will make your test class more informative.

1.2.3 Expected Outcomes

The easiest way to create expectations is to tell QMTest that you expect future results to be the same
as the results you just obtained. Thus, QMTest accepts result files obtained from prior test runs as
expectations.

Thus, rerunning QMTest, but using results_qgmr as expectations, the test results are displayed dif-
ferently:

> gmtest run -0 results.gmr
=Sl = U jEe———————————.—,".,——,—,—, ., ———————————.

python_fail : XFAIL
Expression evaluates to false.

python_pass : PASS

——— TESTS WITH UNEXPECTED OUTCOMES ——— === == o mm oo

None.

I s s e i i i il bl llp i n o o> »>-».-- -

2 (100%) tests as expected

1.3 Test Suites

A test suite is a collection of tests. QMTest can run an entire test suite at once, so by grouping tests
together in a test suite, you make it easier to run a number of tests at once. A single test can be a
member of more than one test suite. A test suite can contain other test suites; the total set of tests in
a test suite includes both those tests included directly and those tests included as part of another test
suite. Every test suite has a name, following the same conventions given above for tests.

One use of test suites is to provide groups of tests that are run in different situations. For example,
the nightly test suite might consist of those tests that should be run automatically every night, while
the checkin test suite might consist of those tests that have to pass before any changes are made to
the target application.

1.3.1 Implicit Test Suites

Section 1.1, “Tests” explains how you may arrange tests in a tree hierarchy, using a period (“.”) as
the path separator in test names. QMTest defines an implicit test suite for each directory. The name
of these implicit test suites is the same as the name of the directory. The implicit test suite corres-
ponding to a directory contains all tests in that directory or its subdirectories.

Let us create some more tests, but this time within their respective subdirectories:

> gmtest create --id=dirl.one -a expression="True" test python.ExecTest
> gmtest create --id=dirl.two -a expression="False" test python.ExecTest

QMTest Concepts

> gmtest create --id=dir2.one -a expression="True" test python.ExecTest
> gmtest create --id=dir2.dir3.one -a expression="False" test python.ExecTest
> gmtest create --id=dir2.dir3.two -a expression="False" test python.ExecTest

This will create five new tests, together with three directories:

> gmtest Is -IR

directory dirl

test python._ExecTest dirl.one

test python._ExecTest dirl.two
directory dir2
directory dir2.dir3
test python._ExecTest dir2.dir3.one
test python._ExecTest dir2.dir3.two
test python._ExecTest dir2.one

These directories are implicit suites, i.e. it is possible to only address tests within them:

> gmtest Is -IR dir2

directory dir2
directory dir2.dir3
test python._ExecTest dir2.dir3.one
test python._ExecTest dir2.dir3.two
test python._ExecTest dir2.one

The suite named "." (a single period) is the implicit test suite corresponding to the root directory in
the test database. This suite therefore contains all tests in the database. For example, the command

> gmtest run .
is equivalent to:
> gmtest run

Both commands run all tests in the database.

1.3.2 Explicit Test Suites

Explicit test suites are a means to refer to a set of tests for the purpose of executing them together,
no matter how they are organized in the test database. For example, you may want to run a subset
of all tests nightly. To do this, you create a suite, listing all tests (as well as contained suites) expli-
citely:

> gmtest create --id=nightly suite explicit_suite._ExplicitSuite(test_ids="["dirl.one", “dir2.one"]",
suite_ids="["dir2.dir3"]")
> gmtest Is -1

directory dirl
directory dir2
suite explicit_suite_ExplicitSuite nightly
> gmtest Is -1 nightly

test python._ExecTest dirl.one

directory dir2.dir3

test python._ExecTest dir2.one

QMTest Concepts

1.4 Test Database

A test database stores tests, test suites, and other entities. When you ask QMTest for a particular test
by name, it queries the test database to obtain the test itself. QMTest stores a test database in a single
directory, which may include many files and subdirectories.

In general, QMTest can only use one test database at a time. However, it is possible to create a test
database which contains other test databases. This mechanism allows you to store the tests associated
with different parts of a large application in different test databases, and still combine them into a
single large test database when required.

A single test database can store many different kinds of tests. By default, QMTest stores tests, test
suites, and all other entities in the test database using subdirectories containing XML files. Generally,
there should be no need to examine or modify these files directly. However, the use of an XML
format makes it easy for you to automatically generate tests from another program, if required.

1.5 Expectation Database

While typically tests are expected to pass, it sometimes is meaningful to indicate a different expect-
ation. QMTest represents expectations by results. Here, the outcomes represent the expectated out-
come, and the annotations may explain the expectation.

An expectation database stores expectations associated with a test database. It provides an interface
to query expectations by test id.

In the simplest case all tests are expected to pass. In a slightly less simple case, an existing set of
results, obtained from a previous test run, may be used as expectations for a subsequent test run.

1.6 Context

When you create a test, you choose arguments for the test. The test class uses this information to run
the test. However, the test class may sometimes need information that is not available when the test
is created. For example, if you are writing compiler tests to verify conformance with the C program-
ming language specification, you do not know the location of the C compiler itself. The C compiler
may be installed in different locations on different machines.

A context gives users a way of conveying this kind of information to tests. The context is a set of
key/value pairs. The keys are always strings. The values of all context properties provided by the
user are strings. In general, all tests in a given use of QMTest will have the same context. However,
when a resource is set up, it may place additional information in the context of those tests that depend
upon it. The values inserted by the resource may have any type, so long as they can be "pickled" by
Python.

All context properties whose names begin with "gmtest." are reserved for use by QMTest. The
values inserted by QMTest may have any type. Test and resource classes should not depend on the
presence or absence of these properites.

To understand how a context is used during the execution of a test let us start by creating a somewhat
less trivial test:

> gmtest create --id compile test

QMTest Concepts

compilation_test.CompilationTest(executable="compile", source_files="["/path/to/compile.cc*]'")"

When run, this test will compile /path/to/compile.cc and run the resulting executable. The test
passes if compilation succeeds, and the program exit status indicates success.

The compilation_test.CompilationTest test class requires that the compiler be available in the
context with the key CompilationTest.compiler_path. You can provide a context variable to
QMTest either through a context file or on the command-line using the -c option. For example:

> gmtest run -c CompilationTest.compiler_path=g++ compile

will run the test using the g++ compiler, while:

> gmtest run -c CompilationTest.compiler_path=/bin/CC compile

will run the test with the /bin/CC compiler.

1.7 Resources

Some tests take a lot of work to set up. For example, a database test that checks the result of SQL
queries may require that the database first be populated with a substantial number of records. If there
are many tests that all use the same set of records, it would be wasteful to set up the database for
each test. It would be more efficient to set up the database once, run all of the tests, and then remove
the databases upon completion.

You can use a resource to gain this efficiency. If a test depends on a resource, QMTest will ensure
that the resource is available before the test runs. Once all tests that depend on the resource have
been run QMTest will destroy the resource.

Just as every test is an instance of a test class, every resource is an instance of a resource class. The
resource class explains how to set up the resource and how to clean up when it is no longer needed.
The arguments to the resource class are what make two instances of the same resource class different
from each other. For example, in the case of a resource that sets up a database, the records to place
in the database might be given as arguments. Every resource has a name, using the same format that
is used for tests.

Under some circumstances (such as running tests on multiple targets at once), QMTest may create
more than one instance of the same resource. Therefore, you should never depend on there being
only one instance of a resource. In addition, if you have asked QMTest to run tests concurrently, two
tests may access the same resource at the same time. You can, however, be assured that there will
be only one instance of a particular resource on a particular target at any one time.

Tests have limited access to the resources on which they depend. A resource may place additional
information into the context (Section 1.6, “Context”) that is visible to the test. However, the actual
resource object itself is not available to tests. (The reason for this limitiation is that for a target con-
sisting of multiple processes, the resource object may not be located in the same process as the test
that depends upon it.)

Setting up or cleaning up a resource produces a result, just like those produced for tests. QMTest
will display these results in its summary output and record them in the results file.

QMTest Concepts

Building on the previous example of a CompilationTest, let us consider a situation where some test
application should be run multiple times with different arguments. The test application, however,
needs to be compiled first. In order to avoid recompiling the application for each test, you can create
a resource that compiles the application once. Then, tests that depend on this resource can assume
that the application has already been built. The following commands:

> gmtest create --id applet resource

compilation_test.CompiledResource(executable="applet", source_files="["/path/to/applet.cc"]")
> gmtest create --id run_applet 0 test

compilation_test.ExecutableTest(args="["0"]", resources="["applet]"™)
> gmtest create --id run_applet_1 test

compilation_test.ExecutableTest(args="["1"]", resources="["applet]"™)

create a resource (named "applet™) for the application and two tests (“run_applet_0" and "run_ap-
plet_1'"), both of which make use of "applet"”, but which pass it different command-line options.

> gmtest run -c CompilationTest.compiler_path=g++ run_applet O run_applet_ 1
——— TEST RESULTS ———emeeeeoeooooooo oo oo oo

Setup applet = PASS
run_applet_0 = PASS
run_applet_1 : PASS
Cleanup applet = PASS

1.8 Targets

A target is QMTest's abstraction of a machine. By using multiple targets, you can run your tests on
multiple machines at once. If you have many tests, and many machines, you can greatly reduce the
amount of time it takes to run all of your tests by distributing the tests across multiple targets.

By default, QMTest uses only one target: the machine on which you are running QMTest. You may
specify other targets by creating a target file, which lists the available targets and their attributes,
and specifying the target file when you invoke gmtest.

Each target is a member of a single target group. All targets in the same target group are considered
equivalent. A target group is specified by a string. If you are testing software on multiple platforms
at once, the target group might correspond to machines running the same operating system. For ex-
ample, all Intel 80386 compatible machines running GNU/Linux might be in the “i386-pc-linux-
gnu” target group.

QMTest by default executes all tests using a 'serial target', i.e. one after another. This behavior can

be changed by specifying a different concurrency strategy, such as one that uses multiple threads,
multiple processes, or even multiple physical machines.

> gmtest create-target -a name=local -a group=local -a threads=2 a thread_target.ThreadTarget

This creates a 'thread target' where two threads are used to run the tests in parallel.

10

QMTest Concepts

1.9 Hosts

Sometime it is necessary to execute a test application on a different machine than the one running
the gmtest application itself. For example, if the test involves executing an application previously
cross-compiled, the binary needs to be uploaded to an appropriate host and run there.

QMTest provides a host abstraction for this purpose. To use this mechanism, test classes need to
provide explicit support for it. A number of built-in test classes support cross-testing.

To run the compi le test on a remote target machine, specify a CompilationTest.target variable in
the context file to contain a host descriptor:

CompilationTest.compiler=/path/to/cross_compiler
Compi lationTest. target=ssh_host.SSHHost(host_name='192.168.0.100"")

This will run the compiled executable on the machine with the IP address 192.168.0.100, using ssh
for communication.

11

Chapter 2
Invoking QMTest

12

Invoking QMTest

All QMTest functionality is available using the gmtest command.

2.1 gmtest

2.1.1 Synopsis

gmtest [option ...] conmand [conmand- option ...] [argunent ...]

2.1.2 Options

These options can be used with any QMTest command, and must precede the command hame on
the command line.

All options are available in a "long form" prefixed with "--" (two hyphens). Some options also may
be specified in a "short form" consisting of a single hyphen and a one-letter abbreviation. Short-form
options may be combined; for example, -abc is equivalent to -a -b -c.

-Dpath, --tdb path Use the test database located in the directory given by pat h.
This flag overrides the value of the environment variable
QMTEST_DB_PATH. If neither this flag nor the environment
variable is specified, QMTest assumes that the current direct-
ory should be used as the database. See Section 1.4, “Test
Database”.

-h, --help Display help information, listing commands and general op-
tions for the gmtest command.

--version Describe the version of QMTest in use.

Additional options are available for specific commands; these are presented with each command.
Options specific to a command must follow the command on the command line. Specify the --help
(-h) option after the command for a description of the command and a list of of available options
for that command.

2.2 gmtest create

2.2.1 Summary

Create a new extension instance.

2.2.2 Synopsis

gmtest create [option ...] ki nd descri ptor

2.2.3 Description

The gmtest create creates a new extension instance. For example, this command can be used to
create a new test or resource. For a list of the kinds of extensions supported by QMTest, run gmtest
extensions. The ki nd must be one of these extension kinds.

If the —-id option is provided then the new instance is created in the test database. The argument to
the —-id option gives the name of the instance. Otherwise, the extension is written as XML to the
filename specified by --output option, or to the standard output if no —--output is specified.

13

Invoking QMTest

The descriptor specifies an extension class and (optionally) attributes for that extension class. The
form of the descriptor is cl ass(at t ri but es), where the attributes are of the form attr ="val ". If
there are no attributes, the parentheses may be omitted.

The cl ass may be either the path to an extensing extension or a QMTest class name in the form
nodul e. cl ass. If the --id option has been provided, QMTest will look for an existing extension in
the test database named cl ass. If the --id option has not been provided, QMTest will look for an
XML file named cl ass. In either case, if an existing extension cannot be found, the cl ass is in-
terepreted as the name of an extension class.

The attributes used to construct the extension instance come from three sources: the attributes in the
extant extension (if the cl ass is the path to an extension file), the --attribute options provided on
the command line, and the explicit attributes provided in the descriptor. If multiple values for the
the same attribute name are provided, the value used is taken from the first source in the following
list for which there is a value: the rightmost attribute provided in the descriptor, the extension file,
or the rightmost --attribute present on the command line.

The create command accepts these options:

-a nane=val ue, --attribute Set the target class argument nane to val ue. The set of valid
name=val ue argument names and valid values is dependent on the exten-
sion class in use.

-iid, -—-idid Add the extension instance to the database, using i d as the
name of the instance.

-ofile, ——outputfile Write the extension instance to fi | e.

2.2.4 Example

This command:
gmtest create -a format=stats -o rs
result_stream text result_stream.TextResultStream(filename="rs")

creates a file called rs containing an instance of TextResultStream.

This command:
> gmtest create --id=simple -a program=testprog test command.ExecTest

creates a test named "simple" that executes the program testprog:

This command:
> gmtest create --id=copy test simple

creates a copy of the "simple" test, naming the new version "copy".

14

Invoking QMTest

2.3 gmtest create-target

2.3.1 Summary

Create a new target.

2.3.2 Synopsis

gmtest create-target [option ...] nane cl ass [group]

2.3.3 Description

The gmtest create-target command creates a new target. A target is an entity that runs tests; normally,
a target corresponds to a particular machine.

The target's name and class must be specified. An optional group may also be specified. When
QMTest decides which target to use to run a particular tests, it will select a target that matches the
test's requested target group.

The create-target command accepts these options:

-a nane=val ue, --attribute Set the target class argument nane to val ue. The set of valid

name=val ue argument names and valid values is dependent on the target
class in use.

-Tfile, --targetsfile Write the target description to the indicated i | e. If there are

already targets listed in i1 e, they will be preserved, except
that any target with the same name as the new target will be
removed. If this option is not present, the file used will be the
QuTest/targets file in the test database directory.

2.4 gmtest create-tdb

2.4.1 Summary

Create a new test database.

2.4.2 Synopsis

gmtest create-tdb [option ...]

2.4.3 Description

The gmtest create-tdb command creates a new, empty test database. A test database is a directory
in which QMTest stores configuration files, tests, and other data. Certain test database classes may
also store data elsewhere, such as in an external relational database.

The test database is created in the directory specified by --tdb (-D) option or by setting the
QMTEST_DB_PATH environment variable. If no database path is specified, QMTest assumes that the
current directory is the test database.

By default, QMTest creates a new test database that uses the standard XML-based implementation.
(See Section 4.5, “Writing Database Classes” for information about writing a test database class.)

15

Invoking QMTest

The create-tdb command accepts these options:

-a nane=val ue, --attribute Set the database attribute nane to val ue. The set of attribute
name=val ue names and valid values is dependent on the database class in
use. The default database class accepts no attributes.

-cclass, --class cl ass Use the test database class given by cl ass. The cl ass may
have the general form described in Section 2.2, “gmtest cre-
ate”. Once you create a test database, you cannot change the
test database implementation it uses. If you do not use this
option, QMTest will use the default test database implement-
ation, which uses an XML file format to store tests.

2.5 gmtest gui

2.5.1 Summary

Start the graphical user interface.

2.5.2 Synopsis

gmtest gui [option ...]

2.5.3 Description

The gmtest gui starts the graphical user interface. The graphical user interface is accessed through
a web browser. You must have a web browser that supports JavaScript to use the graphical interface.
QMTest has been tested with recent versions of Internet Explorer and Netscape Navigator. Other
web browsers may or may nor work with QMTest.

The gui command accepts these options:

-A addr ess, --address addr ess Bind the server to the indicated internet addr ess, which should
be a dotted quad. By default, the server binds itself to the ad-
dress 127.0.0.1, which is the address of the local machine.
If you specify another address, the server will be accessible
to users on other machines. QMTest does not perform any
authentication of remote users, so you should not use this op-
tion unless you have a firewall in place that blocks all untrus-

ted users.
-c nane=val ue, --context For details about this option, see the description of the gmtest
name=val ue run command.
-Cfile, --load-contextfile For details about this option, see the description of the gmtest

run command.

--daemon Run the QMTest GUI as a daemon. In this mode, QMTest
will detach from the controlling terminal and run in the
background until explicitly shutdown.

-j count, --concurrency count For details about this option, see the description of the gmtest
run command.

16

Invoking QMTest

--no-browser

-Ofile, ——outcomesfile

--pid-file path

--port port

-Tfile, —-targetsfile

Do not attempt to start a web browser when starting the GUI.
QMTest will still print out the URL at which the server can
be accessed. You can then connect to this URL manually using
the browser of your choice.

For details about this option, see the description of the gmtest
run command.

Specify the path to which the QMTest GUI will write its
process ID. This option is useful if you want to run QMTest
as a daemon. If this option is not provided, no PID file is
written. If you specify this option, but pat h is the empty string,
QMTest will check the _gmrc configuration file for a pid-
file entry. If there is no such entry, QMTest will use an ap-
propriate platform-specific default value.

Specify the port on which the QMTest GUI will listen for
connections. If this option is not provided, QMTest will select
an available port automatically.

For details about this option, see the description of the gmtest
run command.

2.6 gmtest extensions

2.6.1 Summary

List available extension classes.

2.6.2 Synopsis

gmtest extensions [option ...]

2.6.3 Description

The gmtest extensions lists available extension classes and provides a brief description of each class.
You can use this command to list all of the available extension classes, or to list all of the available
extension classes of a particular type. For example, you can use this command to list all of the

available test classes.

The extensions command accepts these options:

-k kind, --kind ki nd

List the available extension classes of the indicated ki nd. The
ki nd must be one of test, resource, target, database, host,
Or run_database.

2.7 qmtest describe

2.7.1 Summary

Describe an extension class.

17

Invoking QMTest

2.7.2 Synopsis

gmtest describe [option ...] ki nd nane

2.7.3 Description
The gmtest describe displays a description of the extension nane.
The describe command accepts these options:

--kind ki nd Describe an extension class of the indicated ki nd. The ki nd
must be one of test, resource, target, database, host, Or
run_database.

-1, —-long Provide a long (i.e. more detailed detailed) description of the
extension.
-a nane, --attribute name Describe the given attribute.

2.8 qmtest s

2.8.1 Summary

List the contents of the test database.

2.8.2 Synopsis

gmtest Is[option..][nane ..]

2.8.3 Description

The gmtest Is lists the contents of the database, just as the UNIX |s command lists the contents of
the filesystem. If this command is used with no options, QMTest will list the names of the entries
in the root directory of the test database. If one or more names are supplied, then QMTest will list
those items, rather than the root directory. If a name refers to a directory, then the contents of that
directory will be displayed.

The Iscommand accepts these options:

-1, —-long Use a detailed output format that displays the kind and exten-
sion class associated with each item.

-d, --details Display details such as individual attributes for each item.

-R, --recursive Recursively list the contents of directories.

2.9 gqmtest register
2.9.1 Summary
Register an extension class.

2.9.2 Synopsis

gmtest register ki nd cl ass- nane

18

Invoking QMTest

2.9.3 Description

The gmtest register registers an extension class with QMTest. As part of this process, QMTest will
load your extension class. If the extension class cannot be loaded, QMTest will tell you what went
wrong.

QMTest will search for your extension class in the directories it would search when running tests,
including those given by the environment variable QUTEST_CLASS_PATH.

The ki nd argument tells QMTest what kind of extension class you are registering. If you invoke
gmtest register with no arguments it will provide you with a list of the available extension kinds.

The cl ass- name argument gives the name of the class in the form module.Class. QMTest will look
for a file whose basename is the module name and whose extension is either py, pyc, or pyo.

2.10 gmtest run

2.10.1 Summary

Run tests or test suites.

2.10.2 Synopsis

gmtest run[option ..][test-nane|suite-nane ..]

2.10.3 Description

The gmtest run command runs tests and displays the results. If no test or suite names are specified,
QMTest runs all of the tests in the test database. If test or suite names are specified, only those tests
or suites are run. Tests listed more than once (directly or by inclusion in a test suite) are run only
once.

The run command accepts these options:

-a nane=val ue , --annotate Annotate the test run by inserting the named annotation nane
name=val ue with the value val ue into all result streams.

This option may be specified multiple times.

-c nane=val ue , —--context Add a property to the test execution context. The name of the
name=val ue property is name, and its value is set to the string val ue.

This option may be specified multiple times.

-Cfile, --load-contextfile Read properties for the test execution context from the file
file.

The file should be a text file with one context property on
each line, in the format name=val ue. Leading and trailing
whitespace on each line are ignored. Also, blank lines and
lines that begin with "#" (a hash mark) are ignored as com-
ments.

This option may be specified more than once, and used in
conjunction with the --context option. All of the context

19

Invoking QMTest

-fformat, —-format f or nat
-j count, --concurrency count
--no-output

-ofile, —-outputfile

-Ofile, ——outcomesfile

—--random

properties specified are added to the eventual context. If a
property is set more than once, the last value provided is the
one used.

If this option is not specified, but a file named context exists
in the current directory, that file is read. The properties spe-
cified in this file are processed first; the values in this file can
be overridden by subsequent uses of the --context option on
the command line.

Control the format used when displaying results. The format
specified must be one of full, brief, stats, batch, Or none.
The brief format is the default if QMTest was invoked inter-
actively; the batch format is the default otherwise. In the ful 1
format, QMTest displays any annotations provided in test
results. In the brief mode only the causes of failures are
shown; detailed annotations are not shown. In the stats
format, no details about failing tests are displayed; only stat-
istics showing the number of passing and failing tests are
displayed. In the batch mode, the summary is displayed first,
followed by detailed results for tests with unexpected out-
comes. In the none mode, no results are displayed, but a results
file is still created, unless the --no-output option is also
provided.

Run tests in multiple count concurrent processes on the local
computer. On multiprocessor machines, the processes may
be scheduled to run in parallel on different processors. QMTest
automatically collects results from the processes and presents
combines test results and summary. By default, one process
is used.

This option may not be combined with the --targets (-T)
option.

Do not produce a test results file.

Write full test results to fi | e, in QMTest's machine-readable
file format. Use a "-" (a hyphen) to write results to the stand-
ard output. If neither this option nor --no-output is specified,
the results are written to the file named results.qgmr in the
current directory.

Treatfil e as a set of expected outcomes. The fi | e is usually
a results file created either by using the gmtest run or by
saving results in the graphical user interface. If fi | e does not
appear to be such a file, it is interpreted as an extension
descriptor, as described in Section 2.2, “gmtest create”.
QMTest will expect the results of the current test run to match
those specified in the i | e and will highlight differences from
those results.

Run the tests in a random order.

20

Invoking QMTest

--rerunfile

--result-stream descri ptor

--seed i nt eger

-Tfile, —--targetsfile

This option can be used to find hidden dependencies between
tests in the testsuite. (You may not notice the dependencies
if you always run the tests in the same order.)

Rerun only those tests that had unexpected outcomes.

The tests run are determined as follows. QMTest starts with
all of the tests specified on the command line, or, if no tests
are explicitly specified, all of the tests in the database. If no
expectations file is specified (see the description of the
--outcomes option), then all tests that passed in the results
file indicated by the --rerun option are removed form the set
of eligible tests. If an expectations file is specified, then the
tests removed are tests whose outcome in the results file indic-
ated by the --rerun option is the same as in the expectations
file.

The --rerun provides a simple way of rerunning failing tests.
If you run your tests and notice failures, you might try to fix
those failing tests. Then, you can rerun the failing tests to see
if you succeeded by using the —-rerun option.

Specify an additional output result stream. The descriptor is
in the format described in Section 2.2, “gmtest create”.

If the —-random is used, QMTest randomizes the order in
which tests are run, subject to the constraints described in
Section 1.1.3, “Ordering and Dependencies”. By default, the
random number generator is seeded using the system time.

For debugging purposes, it is sometimes necessary to obtain
a reproducible sequence of tests. Use the --seed option to
specify the seed for the random number generator.

Note that even with the same random number seed, if tests
are run in parallel, scheduling uncertainty may still produce
variation in the order in which tests are run.

Use targets specified in target specification file fi I e. If this
option is not present, the QMTest/targets in the test database
directory will be used. If that file is not present, the tests will
be run in serial on the local machine.

2.11 gmtest summarize

2.11.1 Summary

The gmtest summarize displays information stored in a results file.

2.11.2 Synopsis

gmtest summarize [option..][{results-file}[test-nanme|suite-nane..]]

21

Invoking QMTest

2.11.3 Description

The gmtest summarize extracts information stored in the resul ts-file (or results.gmr, if no
results-file is specified) and displays this information on the console. The information is
formatted just as if the tests had been run with gmtest run, but, instead of actually running the tests,
QMTest reads the results from the resul ts-fil e.

Iftheresul ts-fileisnotavalid results file, it is interpreted as an extension descriptor, as described
in Section 2.2, “gmtest create”. You can use the descriptor syntax to read results stored in formats
that are not "built-in" to QMTest.

The summarize command accepts the following options:

-fformt, --format f or mat For details about this option, see the description of the gmtest
run command.

-ofile, ——outputfile Write full test resultsto fi | e, in QMTest's machine-readable
file format. Use a "-" (a hyphen) to write results to the stand-
ard output.

-Ofile, --outcomesfile For details about this option, see the description of the gmtest

run command.

--result-stream descri ptor Specify an additional output result stream. The descriptor is
in the format described in Section 2.2, “gqmtest create”.

2.12 gmtest report

2.12.1 Summary

The gmtest report generates an xml report from a set of test result files.

2.12.2 Synopsis

gmtest report [-0output][-f][report-file[-€ expectation-file]..]

2.12.3 Description

The gmtest report extracts information stored in one or more result files and generates an xml report
file from it. This report file is then typically processed using xslt to generate html or pdf versions of
the report.

The report command accepts the following options:

-f, ——flat Generate a flat listing of test results, instead of reproducing
the database directory tree in the report.

-ooutput file, ——outputoutput- The name of the file to write the report into.
file

2.13 Environment Variables

QMTest recognizes the following environment variables:

22

Invoking QMTest

QMTEST_CLASS_PATH If this environment variable is set, it should contain a list of
directories in the same format as used for the system's PATH
environment variable. These directories are searched (before
the directories that QMTest searches by default) when looking
for extension classes such as test classes and database classes.

QWTEST_DB_PATH If this environment variable is set, its value is used as the
location of the test database, unless the --tdb (-D) option is
used. If this environment variable is not set and the --tdb
option is not used, the current directory is used as the test
database.

2.14 Configuration Variables

These configuration variables are used by QMTest. You should define them in the [gmtest] section
of your QM configuration file.

pid-file The default path to use when creating a PID file with the --pid-
file option. (See Section 2.5, “gmtest gui” for more information
about this option.) If this entry is not present, an appropriate
platform-specific default value is used.

2.15 Return Value

If QMTest successfully performed the action requested, QMTest returns 0. For the gmtest run or
gmtest summarize commands, success implies not only that the tests ran, but also that all of the
tests passed (if the --outcomes option was not used) or had their expected outcomes (if the -—outcomes
option was used).

If either the run command or the summarize command was used, and at least one test failed (if the
--outcomes option was not used) or had an unexpected outcome (if the --outcomes option was
used), gmtest returns 1.

If QMTest could not perform the action requested, gmtest returns 2.

23

Chapter 3
Customizing QMTest

24

Customizing QMTest

The previous chapter introduced the concepts underlying QMTest's design. These were demonstrated
with particular types of tests, resources, databases, etc. . These types are designed to be extensible,
i.e. QMTest can operate with arbitrary instances of these types. In fact, QMTest provides a large
number of such extensions.

This chapter discusses how to use them, i.e. how to find out what extensions are available, and how
to use them to construct custom test databases.

3.1 Extensions

In the previous chapter we have created a test database containing a number of tests. These tests
were instances of test types, such as python.ExecTest. When creating a test, a user chooses a test
type, and assigns test-specific parameters to it.

The same extension mechanism is used for other aspects of QMTest's functionality. All these types
are extensions, which provide a generic interface for QMTest to query.

To find out what extensions are available, use gmtest extensions. To list all available test types,
use:

> gmtest extensions -k test
** Available test classes **
- command.ExecTest
Check a program®s output and exit code.
- command.Shel lCommandTest
Check a shell command®s output and exit code.
- python.ExecTest

Check that a Python expression evaluates to true.

To find out more about a particular extension type, use the describe command:

> gmtest describe test command.ExecTest

class name: python.ExecTest
Check that a Python expression evaluates to true.

class attributes:

prerequisites The tests on which this test depends.

source The source code.

target_group The targets on which this test can run.
expression The expression to evaluate.

resources Resources on which this test or resource depends.

To create a test of that type, you can call:

> gmtest create --id=my_test -a expression="True" test python.ExecTest

25

Customizing QMTest

where the extension parameters are specified with the -a option.

QMTest searches for extensions in particular places, in the following order:

1. inthe paths contained in the QUTEST_CLASS_PATH environment variable.

2. inthe class-path associated with a particular test database (typically the QuTest/ subdirectory).
3. in the site-extension path associated with a particular QMTest installation.

4. in the set of built-in extensions that come with a particular QMTest installation.

This search allows users to provide their own extension types. See Chapter 4, Extending QMTest for
a detailed discussion of how to create new extensions.

The rest of this chapter will discuss the various extension kinds that can be used to customize QMTest.

3.2 Tests

3.2.1 command.ExecTest

The command -ExecTest test class runs a program from an ordinary executable file. Each test specifies
the program executable to run, its full command line, and the data to feed to its standard input stream.
ExecTest collects the complete text of the program's standard output and standard error streams and
the program's exit code, and compares these to expected values specified in the test. If the standard
output and error text and the exit code match the expected values, the test passes.

A command .ExecTest test supplies the following arguments:

Program (text field) The name of the executable file to run. command.ExecTest at-
tempts to locate the program executable in the path specified by
the path property of the test context.

Argument List (set of strings) The argument list for the program. The elements of this set are
sequential items from which the program's argument list is con-
structed. command . ExecTest automatically prepends an implicit
zeroth element, the full path of the program.

Standard Input (text field) Text or data to pass to the program'’s standard input stream. This
data is written to a temporary file, and the contents of the file
are directed to the program'’s standard input stream.

Environment (set of strings) The environment (i.e. the set of environment variables) available
to the executing program. Each element of this argument is a
string of the form "VARI ABLE=VALUE".

command .ExecTest adds additional environment variables auto-
matically.

In addition, every context property whose value is a string is
accessible as an environment variable; the name of the environ-
ment variable is the name of the context property, prefixed with

"omv_" and with any dots (".") replaced by a double underscore
("_"). For example, the value of the context property "Com-

26

Customizing QMTest

pilerTable.c_path" is available as the value of the environment
variable "QMv_CompilerTable_c_path".

Expected Exit Code (integer The exit code value expected from the program. If the program
field) produces an exit code value different from this one, the test fails.

Expected Standard Output (text ~ The text or data which the program is expected to produce on

field) its standard output stream. The actual text or data written to
standard output is captured, and command . ExecTest performs a
bytewise comparison to the expected text or data. If they do not
match, the test fails.

Expected Standard Error (text The text or data which the program is expected to produce on

field) its standard error stream. The actual text or data written to
standard error is captured, and command.ExecTest performs a
bytewise comparison to the expected text or data. If they do not
match, the test fails.

3.2.2 command.Shel ICommandTest

command . Shel ICommandTest iS very similar to command . ExecTest, except that it runs a program via
the shell rather than directly. Instead of specifying an executable to run and the elements of its argu-
ment list, a test provides a single command line. The shell is responsible for finding the executable
and constructing its argument list.

Standard input and the environment are specified in the test. The test passes if the command produces
the expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the
shell starts up. Therefore, the environment set up by a command.Shel ICommandTest, including the
contents of the test context, are directly accessible via shell variables. The syntax to use depends on
the particular shell.

command . Shel ICommandTest has the same fields as command . ExecTest, except that the Program and
Argument List properties are replaced with these:

Command (text field) The command to run. The command is delivered verbatim to the
shell. The shell interprets the command according to its own
quoting rules and syntax.

3.2.3 command.ShellScriptTest

command . ShelIScriptTest is an extension of command . CommandTest that lets a test specify an entire
shell script instead of a single command. The script specified in the test is written to a temporary
file, and this file is interpreted by the specified shell or command interpreter program.

Standard input, the environment, and the argument list to pass to the script are specified in the test.
The test passes if the script produces the expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the
shell starts up. Therefore, the environment set up by a command.ShellScriptTest, including the
contents of the test context, are directly accessible via shell variables. The syntax to use depends on
the particular shell.

27

Customizing QMTest

command.ShellScriptTest has the same fields as command.ExecTest, except that the Program
property is replaced with:

Script (text field) The text of the script to run.

3.24 CompilationTest

compilation_test.CompilationTest compiles a set of source files and optionally runs the compiled
executable.

The compiler executable's name, as well as global compilation parameters are queried from these
context variables:

CompilationTest.compiler_path The name of the compiler executable.
CompilationTest.compiler_options Compiler options.
CompilationTest.compiler_Idflags Linker options.

The compi lationTest takes the following parameters.

options (set field) Test-specific options to pass to the compiler.
Idflags (set field) Test-specific linker flags to pass to the compiler.
source_files (set field) Source files to be compiled..

executable (text field) The name of the executable to be compiled.
execute (boolean field) Whether or not to run the compiled executable.

3.3 Test Suites

3.4 Test Resources

34.1 TempDirectoryResource

An instance of this resource creates a temporary directory during setup, and deletes it during cleanup.
The full path to the directory is available to tests via a context property.

dir_path_property (text field) The name of the context property which is set to the path to the
temporary directory.

3.4.2 CompilerTable

A compi lerTable resource creates a set of compiler objects according to context variables. These
compiler objects are then made available to test instances through the compilers context variable
that maps language names to compiler objects.

The context variable Compi lerTable. 1anguages should be a whitespace-separated list of programming
language names. Then, for each language <lang>, the following variables are looked up and used
for the creation of compiler objects:

28

Customizing QMTest

CompilerTable.<lang>_kind The kind of compiler (e.g., "GCC" or "EDG").
(text field)

CompilerTable.<lang>_path The path to the compiler.
(text field)

CompilerTable.<lang>_options A whitespace-separated list of command-line options to provide
(text field) to the compiler.

3.5 Test Databases

3.5.1 XMLDatabase

The XMLDatabase stores its content as a directory hierarchy containing XML files. It is the default
test database used by QMTest. Each QMTest subdirectory is represented by a subdirectory in the
filesystem. A test, suite, or resource is represented by an XML file. These files have file extensions
.gmt, .gms, and .gma, respectively.

Expert QMTest users may modify the contents of the test database directly by editing these files.
However, it is the user's responsibility to ensure the integrity and validity of the XML contents of
each file. For example, file and directory names should contain only characters allowed in identifiers
(lower-case letters, digits, hyphens, and underscores); a period should only be used before a file ex-
tension, such as .gmt. Also, the files and directories in a test database should not be modified directly
while QMTest is running with that test database.

352 CompilationTestDatabase

The CompilationTestDatabase associates source files with CompilationTest instances. The mapping
uses file extensions to determine the programming language, and thus, what compiler and compilation
flags to use. To create a new test, simply add a source file with an appropriate file extension to the
test database.

All tests use the CompilerTable resource, and therefor require the appropriate context variables to
be provided.

Additionally, more compiler options can be added per test id or even subdirectory id. Given the fol-
lowing context file:

CompilerTable. languages=c
CompilerTable.c_kind=GCC
CompilerTable.c_path=gcc
CompilerTable.c_options=-02
a.b.c_options=-1 /a/b/common
a.b.c.c_options=-1 /a/b/c

a test asb/c/test.c will be compiled with gcc -O2 -l /a/lb/common -1 /a/b/c while a test
a/b/d/test.c will be compiled with gcc -O2 -1 /a/b/common.

The Compi lationTestDatabase takes the following parameters.
srcdir (text field) The root of the test suite's source tree.

excluded_subdirs (set field) A set of directory names not to be parsed as subdirectories.

29

Customizing QMTest

test_extensions (dictionary field) The mapping from file extensions to programming languages.

3.6 Expectation Databases

3.6.1 PreviousTestRun

The PreviousTestRun queries expectations from a results file. Thus, running QMTest twice, the
second time using the results of the first test run as expectations, will result in no unexpected results:

> gmtest run -o my_results.qgmr
R 1= ST = =5 U [S

execO : PASS
execl : FAIL
exec2 : PASS

e UESUS VA DD KO BASS cemmeee e e e e e

execl : FAIL
Expression evaluates to false.

e SUATISUIES commm—emem e e e e e e e

3 tests total

1 (33%) tests FAIL

2 (67%) tests PASS

> gmtest run -e previous_testrun.PreviousTestRun(file_name="my_results._gmr')
——— TEST RESULTS ———— oo

execO : PASS
execl : XFAIL
exec2 : PASS

—ee UESS WU WS QUUERNES com— e e e e

None.

e SUATISUIES commm—emem e e e e e e e

3 (100%) tests as expected

Since taking previous test runs as expectations is a common use case, the second command above
may be expressed in a more compact form as:

gmtest run -0 my_results._gmr
The PreviousTestRun takes the following parameters.

file_name (text field) The filename of the results file.

30

Customizing QMTest

3.6.2 XMLExpectationDatabase

The XMLExpectationDatabase stores expectations in an XML file. Instead of containing expectations
for all tests, individual expectations are computed from rules by matching test-ids as well as test-run
annotations against specific rules.

<expectations>
<expectation outcome="fail" test id=""_*">

</expectation>
<expectation outcome="fail" test_id="Ffirst*" />
</expectations>

The above little expectation database thus contains the following rules (subsequent matching rules
override previous matching rules):

1. All tests are expected to fail if the annotation a has value b.

2. All tests whose test-ids start with fi r st are expected to fail.

The XMLExpectationDatabase takes the following parameters.

file_name (text field) The filename of the xml expectations file.

3.7 TestTargets

Test targets represent entities that QMTest uses to run tests. See Section 1.8, “Targets” for an overview
of how QMTest uses targets.

3.7.1 Target Specification
Each target specification includes the following:

1. The name of the target. This is a name identifying the target, such as the host name of the
computer which will run the tests. Target names should be unique in a single target file.

2. Thetarget class. Similar to a test class, a target class is a Python class which implements a type
of target. As with test classes, a target class is identified by its name, which includes the module
name and the class name.

For example, thread_target.ThreadTarget is the name of a target class, provided by QMTest,
which runs tests in multiple threads on the local computer.

QMTest includes several target class implementations. See Section 3.7.2, “Target Classes” for
details.

3. Atarget group name. The test implementor may choose the syntax of target group names in a
test implementation. Target groups may be used to encode information about target attributes,
such as architecture and operating system, and capabilities.

4. Optionally, a target specification may include additional properties. Properties are named and
have string values. Some target classes may use property information to control their configur-
ation. For instance, a target class which executes tests on a remote computer would extract the
network address of the remote computer from a target property.

31

Customizing QMTest

3.7.2 Target Classes
QMTest includes these target class implementations.
3.7.2.1 SerialTarget

The serial_target.SerialTarget target class runs tests one after the other on the machine running
QMTest. If you use a SerialTarget, you should not also use any other targets, including another
SerialTarget at the same time.

3.7.2.2 ThreadTarget

The thread_target.ThreadTarget target class runs tests in one or more threads on the machine
running QMTest. The ThreadTarget can be used to run multiple tests at once.

ThreadTarget uses the following properties:

» The concurrency specifies the number of threads to use. Larger numbers of threads will allow
QMTest to run more tests in parallel. You can experiment with this value to find the setting that
allows QMTest to run tests most quickly.

3.7.2.3 ProcessTarget

The process_target.ProcessTarget target class run tests in one more processes on the machine
running QMTest. This target class is not available on Windows. Like ThreadTarget, ProcessTarget
can be used to run multiple tests simultaneously.

In general, you should use ThreadTarget instead of ProcessTarget to maximize QMTest performance.
However, on machines that do not have threads, ProcessTarget provides an alternative way of
running tests in parallel.

ProcessTarget uses the following properties:

« The concurrency specifies the number of processes to use. Larger numbers of processes will allow
QMTest to run more tests in parallel. You can experiment with this value to find the setting that
allows QMTest to run tests most quickly.

» QMTest uses the path given by the gmtest property to create additional QMTest instances. By
default, the path /usr/local/bin/gmtest is used.

3.7.2.4 RemoteShellTarget

The rsh_target.RSHTarget target class runs tests on a remote computer via a remote shell invocation
(rsh, ssh, or similar). This target uses a remote shell to invoke a program similar to the gmtest
command on the remote computer. This remote program accepts test commands and responds with
results from running these tests.

To use RSHTarget, the remote computer must have QMTest installed and must contain an identical
copy of the test database. QMTest does not transfer entire tests over the remote shell connection;
instead, it relies on the remote test database for loading tests.

In addition, the remote shell program must be configured to allow a remote login without additional
intervention (such as typing a password). If you use rsh, you can use an .rhosts file to set this up.
If you use ssh, you can use an SSH public key and the ssh-agent program for this. See the corres-
ponding manual pages for details.

32

Customizing QMTest

RSHTarget uses all of the properties given above for ProcessTarget. In addition, RSHTarget uses
the following properties:

» The remote_shell property specifies the path to the remote shell program. The default value is
ssh. The remote shell program must accept the same command-line syntax as rsh.

» The host property specifies the remote host name. If omitted, the target name is used.

» The database_path property specifies the path to the test database on the remote computer. The
test database must be identical to the local test database. If omitted, the local test database path
is used.

» The arguments property specifies additional command-line arguments for the remote shell program.
The value of this property is split at space characters, and the arguments are added to the command
line before the name of the remote host.

For example, if you are using the ssh remote shell program and wish to log in to the remote
computer using a different user account, specify the -1 username option using the arguments

property.

3.8 Hosts

A number of test classes delegate the execution of executables to a dedicated Host class, for example
to allow parts of the test to be run on a different platform (such as when cross-compiling and cross-
testing). To achieve that, a number of Host subclasses are provided that can be used to execute code
in different ways. Typically, a test class will query the Host instance to use from a context variable.

3.8.1 local_host.LocalHost

A LocalHost is the machine on which Python is running.

3.8.2 ssh_host.SSHHost

An ssHHost is accessible via ssh or a similar program. The ssHHost host uses the following paramet-
ers.

host_name (text field) The name of the remote host.

ssh_program (text field) The path to the remote shell program.
ssh_args (set field) The arguments to the remote shell program.
scp_program (text field) The path to the remote copy program.
scp_args (set field) The arguments to the remote copy program.
default_dir (text field) The default directory on the remote system.

3.8.3 ssh_host.RSHHost

An RSHHost iS a SSHHost that uses rsh instead of ssh.

33

Customizing QMTest

3.8.4 simulator.Simulator

A Simulator is a semi-hosted simulation environment. The Simulator host uses the following
parameters.

simulator (text field) The simulation program.

simulator_args (set field) Arguments to the simulation program.

3.9 Result Streams and Result Readers

Result streams and result readers are the means that allow QMTest to externalize and internalize test
results.

391 text_result_stream.TextResultStream

A TextResultStream displays information textually, in human readable form. It is used when QMTest
is run without a graphical user interface.

3.9.2 xml_result_stream.XMLResultStream

An XMLResultStream writes out results as XML. The resulting file can be read back in using an
XMLResultReader.

3.9.3 pickle_result_stream.PickleResultStream

A PickleResultStream writes out results as Python pickles. The resulting file can be read back in
using a PickleResultReader.

394 sql_result_stream.SQLResultStream

An SQLResultStream writes results out to an SQL database. To read results from an SQL database
use SQLResultReader.

3.10 The QMTest Configuration File

QMTest allows you to set up a per-user configuration file that contains your personal preferences,
defaults, and settings.

The configuration file is named $HOME/ . gmrc. On Windows, you may have to set the HOME environment
variable manually.

The QMTest configuration file is a plain text file, with a format similar to that used in Microsoft
Windows . IN1 files. It is divided into sections by headings in square brackets. Three sections are
supported: [common] contains configuration variables common to all the QM tools, while [test]
contains configuration variables specific to QMTest. Within each section, configuration variables
are set using the syntax vari abl e=val ue.

Here is a sample QM configuration file:

> cat ~/.gmrc

34

Customizing QMTest

[common]

browser=/usr/local/bin/mozilla

3.10.1 Configuration Variables

These configuration variables are used in all QM tools. You should define them in the [common]
section of your QM configuration file.

browser (UNIX-like platforms
only)

command_shell

click_menus

remote_shell (UNIX-like plat-
forms only)

script_shell

The path to your preferred web browser. If omitted, QM attempts
to run mozilla. The QM GUI does not correctly with Netscape
4 due to limitations in the support for JavaScript and DOM in
that browser.

The shell program to run a single shell command. The value of
this property is the path to the shell executable, optionally fol-
lowed by command-line options to pass to the shell, separated
by spaces. The shell command to run is appended to the com-
mand.

On GNU/Linux systems, the default is /bin/bash -norc -nopro-
file -c. On other UNIX-like systems, the default is /bin/sh -c.

If this option is not present, or has the value 0, menus in the GUI
are activated by moving the mouse over the menu name.

If this option has the value 1, the menus are activated by clicking
on the menu name.

The program used for running commands on remote computers.
The program must accept the same syntax as the standard rsh
command, and should be configured to run the command re-
motely without any additional interaction (such as requesting a
password from the TTY). The default value is /usr/bin/ssh.

The shell program to run a shell script. The value of this property
is the path to the shell executable, optionally followed by com-
mand-line options to pass to the shell, separated by spaces. The
filename of the shell command is appended to the command.

On GNUY/Linux systems, the default is /bin/bash -norc -nopro-
file. On other UNIX-like systems, the default is /bin/sh.

35

Chapter 4
Extending QMTest

36

Extending QMTest

If the built-in functionality provided with QMTest does not serve all of your needs, you can extend
QMTest. All extensions to QMTest take the form of Python classes. You can write new test classes,
resource classes, or database classes in this way.

The contents of the class differ depending on the kind of extension you are creating. For example,
the methods that a new test class must implement are different from those that must be provided by
a new database class. In each case, however, you must create the class and place it in a location where
QMTest can find it. The following sections explain how to create extension classes. The last section
in this chapter explains how to register your new extension classes.

4.1 Extension Classes

All extensions to QMTest are implemented by writing a new Python class. This new Python class
will be derived from an appropriate existing QMTest Python class. For example, new test classes
are derived from Test while new test database classes are derived from Database.

The classes from which new extensions are derived (like Test) are all themselves derived from Ex-
tension’. The Extension class provides the basic framework used by all extension classes. In par-
ticular, every instance of Extension can be represented in XML format in persistent storage.

Every Extension class has an associated list of parameter attributes. When an Extension instance
is written out as XML, the value of each parameter is encoded in the output. Similarly, when an ex-
tension instance is read back in, the parameter values are decoded. Conceptually, two Extension
instances are the same if they are instances of the same derived class and their parameters have the
same values.

Each parameter has a type. For example, every Test has a parameter called target_group. The target
group is a string indicating on which targets a particular test should be run.

Each parameter is represented by an instance of Field’. A Field instance can read or write values
in XML format. A Field can also produce an HTML representation of a value, or an HTML form
that allows a user to update the value of the field. It is the fact that all Extension parameters are in-
stances of Field that makes it possible to represent Extension instances as XML. Smilarly, it is the
use of the Field class that allows the user to edit tests in the QMTest GUI.

Each class derived from Extension may contain attributes that are instances of Field.

For example, after the following class definitions:

class A(Extension):
X = TextField()

class B(A):
y = IntegerField(default_value = 42)
z = TextField(default _value = "a value™)

A has one parameter (x) and B has three parameters (x, y, and z).

During construction of extensions you may provide arguments to set the values of these parameters
(and thus overriding default values):

! http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/extension/Extension.html
2 http://www.codesourcery.com/public/gmtest/qmtest-2.4.1/internals/qm/fields/Field.html

37

http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/extension/Extension.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/extension/Extension.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/Field.html

Extending QMTest

A(X
B(x

argument')
"another argument', z = "value')

The serialized form of A will be equivalent to

<extension class="__ main__.A">
<argument name=''X"><text>argument</text></argument>
</extension>
and for B
<extension class="__ main__.B">

</extension>

Extension instances hold appropriately typed attributes for all fields. A TextField translates to a
str instance, while a IntegerField translates to an int, etc.

> a = A(x = "argument')
> print type(a-x), a-x
<type "str"> argument

4.2 Field Classes

Field® instances are used to represent extension parameters. A Field can read and write XML rep-
resentations of values, generate HTML representations of values, or present HTML forms that permit
the user to update the value of the field. There are several classes derived from Field that you can
use in extension classes. If none of those classes satisfy your needs, you can create a new class derived
from Field.

A Field may have a title, which is used when presenting the Field to the user. The title need not be
avalid Python identifier. For example, the RSHTarget class has a host parameter whose title is Remote
Host Name. When accessing an instance of this class, the programmer refers to self.host. In the
GUI, however, the user will see the value presented as Remote Host Name.

A Field may have an associated description, which is a longer explanation of the Field and its
purpose. This information is presented to the user by the GUI.

A Field may have a default value. The default value is used if no argument is provided for the field
when the extension is initialized.

This example code from RSHTarget shows how a Field is constructed:

remote_shell = gm.fields.TextField(
title=""Remote Shell Program",
description="""The path to the remote shell program.

3 http://www.codesourcery.com/public/gmtest/qmtest-2.4.1/internals/qm/fields/Field.html

38

http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/Field.html

Extending QMTest

The name of the program that can be used to create a
remote shell. This program must accept the same command

line arguments as the “rsh® program. ,
default_value="'ssh™)

See the internal documentation for Field* for complete interface documentation.

4.2.1 Built-In Field Classes

QMTest comes with several useful field classes:

* IntegerField" stores integers.

« TextField® stores strings.

* EnumerationField’ stores one of a set of (statically determined) possible values.
« ChoiceField® stores one of a set of (dynamically determined) possible values.

« BooleanField® stores a boolean value.

o TimeField! stores a date and time.

« AttachmentField*! stores arbitrary data.

« setField'? stores multiple values of the same type.

« TupleField® stores a fixed number of other fields.

4.2.2 Writing Field Classes

Before writing any code, you should decide what kind of data your field class will store. For example,
will your field class store arbitrary strings? Or only strings that match a particular regular expression?
Or will your field class store images? Once you have decided this question, you can write the val idate
function for your field class. This function checks an input value (a Python object) for validity.
validate can return a modified version of the value. For example, if the field stores strings, you
could choose to accept an integer as an input to val idate and convert the integer to a string before
returning it.

The FormatvalueAsHtml function produces an HTML representation of the value. You must define
this function so that the GUI can display the value of the field. The st yl e parameter indicates how
the value should be displayed. If the style is new or edit, the HTML representation returned should
be a form that the user can use to set the value. If the user does not modify the form, ParseFormvalue
should yield the value that was provided to FormatvalueAsHtml.

4 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/Field.html

5 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/IntegerField.html

6 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/TextField.html

7 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/EnumerationField.html
8 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/ChoiceField.html

9 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/BooleanField.html

10 http:/www.codesourcery.com/public/gmtest/gmtest-2.4. 1/internals/qm/fields/TimeField.html

1 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/AttachmentField.html
12 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/SetField.html

13 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/fields/TupleField.html

39

http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/Field.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/IntegerField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/TextField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/EnumerationField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/ChoiceField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/BooleanField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/TimeField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/AttachmentField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/SetField.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/fields/TupleField.html

Extending QMTest

The MakeDomNodeForValue and GetvalueFromDomNode functions convert values to and from XML
format. The FormatvalueAsText and ParseTextValue functions convert to and from plain text. As
with FormatvalueAsHtml and ParseFormvalue, these pairs of functions should be inverses of one
another.

The ParseTextValue, ParseFormvalue, and GetvalueFromDomNode functions should use validate
to check that the values produced are permitted by the Field. In this way, derived classes that want
to restrict the set of valid values, but are otherwise content to use the base class functionality, need
only provide a new implementation of validate.

All of the functions which read and write Field values may raise exceptions if they cannot complete
their tasks. The caller of the Field is responsible for handling the exception if it occurs.

4.3 Writing Test Classes

If the test classes that come with QMTest do not serve your needs, you can write a new test class. A
test class is a Python class derived from Test™*, which itself is derived from Extension. It may define
parameters as discussed in Section 4.1, “Extension Classes”. The test class must provide a Run
method that implements the way the test is performed and results are validated.

For example, if you want to test that a compiler correctly compiled a particular source file, the source
file would be an argument to the test while the Run method would be responsible for running the
compiler and the program generated by the compiler. The path to the compiler itself would be provided
via the context (Section 1.6, “Context”); that is an input to the testing system that varies depending
on the user's environment.

The rRun method takes two arguments: the context and the result. The context object is an instance
of context™. The result object is an instance of Result'®. The result is initialized with the PASS
outcome. Therefore, if the Run method does not modify the result, the test will pass. If the test fails,
the Result.Fail method should be called to indicate failure.

The Result.Annotate method can be used to add information to the Result, whether or not the test
passes. For example, annotations can be used to record the time a test took to execute, or to log the
output from a command run as part of the test. Every annotation is a key/value pair. Both keys and
values are strings. The key created by a test class ¢ should have the form c.key_name. The value
must be valid HTML. When results are displayed in the GUI, the HTML is presented directly to the
user. When results are displayed as text, the HTML is converted to plain text. That conversion uses
textual devices (such as single quotes around verbatim text) to emulate the HTML markup where
possible.

As a convenience, you can use Python's dictionary notation to access annotations. For example:

“value™
result["'C_keyl"] .upper()

result["'C.keyl']
result["'C.key2"]

is equivalent to:

result.Annotate({ "C.keyl" : "value"
"C.key2"™ : "VALUE"™ })

14 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/test/test/Test.html
15 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/test/context/Context.html
16 http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/test/result/Result.html

40

http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/test/test/Test.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/test/context/Context.html
http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/test/result/Result.html

Extending QMTest

The context (like the result) is a set of key/value pairs. The keys used by a test class ¢ should have
the form c.key_name. The values are generally strings, but if a test depends on a resource, the resource
can provide context values that are not strings.

If the Run raises an unhandled exception, QMTest creates a result for the test with the outcome ER-
ROR. Therefore, test classes should be designed so that they do not raise unhandled exceptions when
a test fails. However, QMTest handles the exception generated by the use of non-existant context
variables specially. Because this situation generally indicates incorrect usage of the test suite, QMTest
uses a special error message that instructs the user to supply a value for the context variable.

4.4 Writing Resource Classes

Writing resource classes is similar to writing test classes. The requirements are the same except that,
instead of a Run method, you must provide two methods named SetUp and Cleanup. The SetUp
method must have the same signature as a test classs Run. The Cleanup method is similar, but does
not take a cont ext parameter.

The setup method may add additional properties to the context by assigning to its cont ext parameter.
These additional properties will be visible only to tests that require this resource.

The example below shows the SetUp and CleanUp from the standard QMTest TempDi rectoryResource
class. This resource creates a temporary directory for use by the tests that depend on the resource.
The setUp method creates the temporary directory and records the path to the temporary directory
in the context so that tests know where to find the directory. The cleanup method removes the tem-
porary directory.

def SetUp(self, context, result):

Create a temporary directory.
self.__dir = gm.temporary_directory.TemporaryDirectory()
Provide dependent tests with the path to the new directory.
context["TemporaryDirectoryResource.temp_dir_path']
= self.__dir.GetPath()

def CleanUp(self, result):

Remove the temporary directory.
del self.__dir

4.5 Writing Database Classes

The test database class controls the format in which tests are stored. QMTest's default database class
stores each test as an XML file, but you might want to use a format that is particularly well suited
to your application domain or to your organization's arrangement of computing resources.

For example, if you were testing a compiler, you might want to represent tests as source files with
special embedded comments indicating what errors are expected when compiling the test. You could
write a test database class that can read and write tests in that format.

41

Extending QMTest

Or, if you wanted to share a single test database with many people in such a way that everyone
automatically saw updates to the database, you might want to put all of the tests on a central HTTP
server. You could write a test database class that retrieves tests from the server and creates new tests
by uploading them to the server.

A test database class is a Python class that is derived from Databasel’, which is itself derived from
Extension. To create a new database class, you must define methods that read and write Extension
instances.

The database is also responsible for determining how tests (and other entities stored in the database)
are named. Each item stored in the database must have a unique name. For a database that stores
files in the filesystem, the name of the file may be a good name. For a database of unit tests for Python
module, the name of the module might be a good name for the tests. Choosing the naming convention
appropriate requires understanding both the application domain and the way in which the tests will
actually be stored.

The database class must have a GetExtension method which retrieves an instance of Extension
given the name of the instance. If your database is modifiable, you must also provide WriteExtension
and RemoveExtension methods. For historical reasons, your database class must also set the class
variable _is_generic_database to true.

4.6 Registering and Distributing Extension
Classes

To use your Extension class, you must place the Python module file containing it in a directory where
QMTest can find it. QMTest searches for extensions in particular places, in the following order:

1. inthe paths contained in the QUTEST_CLASS_PATH environment variable.

2. inthe class-path associated with a particular test database (typically the QuTest/ subdirectory).
3. in the site-extension path associated with a particular QMTest installation.

4. inthe set of built-in extensions that come with a particular QMTest installation.

You should generally place module files containing extension classes in the test database's QMTest
directory, unless you plan to use the test classes in more than one test database.

You must use the gmtest register command to register your new extension class. You must perform
this step no matter where you place the module containing your extension class.

You can refer to the new extension class using the syntax module_Class, where module is the name
of the module and Class is the name of the class.

To make your extension classes sharable by other test database instances, you should install them
into the site-extension path associated with a gmtest installation.

To facilitate this installation, QMTest provides code that can be used in conjunction with python's
distutils to install, and even distribute them. The following setup.py script will allow you to install
(and even package !) all extension modules from the extensions subdirectory:

o http://www.codesourcery.com/public/gmtest/gmtest-2.4.1/internals/qm/test/database/Database.html

42

http://www.codesourcery.com/public/qmtest/qmtest-2.4.1/internals/qm/test/database/Database.html

Extending QMTest

from gm.dist.distribution import Distribution
from distutils.core import setup

setup(distclass=Distribution,
gmtest_extensions="extensions')

Then, the following command installs extension modules from extensions:

> python setup.py install

43

	QMTest: User's Guide
	Table of Contents
	Chapter 1QMTest Concepts
	1.1Tests
	1.1.1Running Tests
	1.1.2Prerequisite Tests
	1.1.3Ordering and Dependencies

	1.2Test Results
	1.2.1Outcomes
	1.2.2Annotations
	1.2.3Expected Outcomes

	1.3Test Suites
	1.3.1Implicit Test Suites
	1.3.2Explicit Test Suites

	1.4Test Database
	1.5Expectation Database
	1.6Context
	1.7Resources
	1.8Targets
	1.9Hosts

	Chapter 2Invoking QMTest
	2.1qmtest
	2.1.1Synopsis
	2.1.2Options

	2.2qmtest create
	2.2.1Summary
	2.2.2Synopsis
	2.2.3Description
	2.2.4Example

	2.3qmtest create-target
	2.3.1Summary
	2.3.2Synopsis
	2.3.3Description

	2.4qmtest create-tdb
	2.4.1Summary
	2.4.2Synopsis
	2.4.3Description

	2.5qmtest gui
	2.5.1Summary
	2.5.2Synopsis
	2.5.3Description

	2.6qmtest extensions
	2.6.1Summary
	2.6.2Synopsis
	2.6.3Description

	2.7qmtest describe
	2.7.1Summary
	2.7.2Synopsis
	2.7.3Description

	2.8qmtest ls
	2.8.1Summary
	2.8.2Synopsis
	2.8.3Description

	2.9qmtest register
	2.9.1Summary
	2.9.2Synopsis
	2.9.3Description

	2.10qmtest run
	2.10.1Summary
	2.10.2Synopsis
	2.10.3Description

	2.11qmtest summarize
	2.11.1Summary
	2.11.2Synopsis
	2.11.3Description

	2.12qmtest report
	2.12.1Summary
	2.12.2Synopsis
	2.12.3Description

	2.13Environment Variables
	2.14Configuration Variables
	2.15Return Value

	Chapter 3Customizing QMTest
	3.1Extensions
	3.2Tests
	3.2.1command.ExecTest
	3.2.2command.ShellCommandTest
	3.2.3command.ShellScriptTest
	3.2.4CompilationTest

	3.3Test Suites
	3.4Test Resources
	3.4.1TempDirectoryResource
	3.4.2CompilerTable

	3.5Test Databases
	3.5.1XMLDatabase
	3.5.2CompilationTestDatabase

	3.6Expectation Databases
	3.6.1PreviousTestRun
	3.6.2XMLExpectationDatabase

	3.7Test Targets
	3.7.1Target Specification
	3.7.2Target Classes
	3.7.2.1SerialTarget
	3.7.2.2ThreadTarget
	3.7.2.3ProcessTarget
	3.7.2.4RemoteShellTarget

	3.8Hosts
	3.8.1local_host.LocalHost
	3.8.2ssh_host.SSHHost
	3.8.3ssh_host.RSHHost
	3.8.4simulator.Simulator

	3.9Result Streams and Result Readers
	3.9.1text_result_stream.TextResultStream
	3.9.2xml_result_stream.XMLResultStream
	3.9.3pickle_result_stream.PickleResultStream
	3.9.4sql_result_stream.SQLResultStream

	3.10The QMTest Configuration File
	3.10.1Configuration Variables

	Chapter 4Extending QMTest
	4.1Extension Classes
	4.2Field Classes
	4.2.1Built-In Field Classes
	4.2.2Writing Field Classes

	4.3Writing Test Classes
	4.4Writing Resource Classes
	4.5Writing Database Classes
	4.6Registering and Distributing Extension Classes

